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Abstract

Nanotechnology is providing a new set of tools to the engineering com-
munity to design nanoscale components with unprecedented function-
alities. The integration of several nano-components into a single entity
will enable the development of advanced nanomachines. Nanonetworks,
i.e., networks of nanomachines, will enable a plethora of applications
in the biomedical, environmental, industrial and military fields. To
date, it is still not clear how nanomachines will communicate. The
miniaturization of a classical antenna to meet the size requirements of
nanomachines would impose the use of very high radiation frequencies,
which would compromise the feasibility of electromagnetic nanonet-
works. Therefore, a new wireless technology is needed to enable this
paradigm. The objective of this work is to establish the foundations
of graphene-enabled electromagnetic communication in nanonetworks.
First, novel graphene-based plasmonic nano-antennas are proposed,
modeled and analyzed. The obtained results point to the Terahertz
Band (0.1-10 THz) as the frequency range of operation of novel nano-
antennas. For this, the second contribution in this work is the develop-
ment of a novel channel model for Terahertz Band communication. In
addition, the channel capacity of the Terahertz Band is numerically in-
vestigated to highlight the potential of this still-unregulated frequency
band. Third, new communication mechanisms for electromagnetic na-
nonetworks are developed. These include a novel modulation based
on the transmission of femtosecond-long pulses, new low-weight codes
for channel error prevention in nanonetworks, a novel symbol detec-
tion scheme at the nano-receiver, a new energy model for self-powered
nanomachines with piezoelectric nano-generators, and a new Medium
Access Control protocol tailored to the Terahertz Band. Finally, a one-
to-one nano-link is emulated to validate the proposed solutions.

J. M. Jornet and I. F. Akyildiz. Fundamentals of Electromagnetic Nanonetworks in
the Terahertz Band. Foundations and Trends® in Networking, vol. 7, no. 2-3,
pp. 77–233, 2012.
DOI: 10.1561/1300000045.
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1
Introduction

In 1959, the Nobel laureate physicist Richard Feynman, in his famous
speech entitled “There’s Plenty of Room at the Bottom", described for
the first time how the manipulation of individual atoms and molecules
would give rise to more functional and powerful man-made devices. In
his talk, he noted that several scaling issues would arise when reaching
the nanoscale, which would require the engineering community to re-
think the way in which devices are conceived. More than half century
later, nanotechnology is providing a new set of tools to the engineer-
ing community to control matter at an atomic and molecular scale.
At this scale, novel nanomaterials show new properties not observed
at the microscopic level. By exploiting these properties, new nanoscale
components with unprecedented functionalities are being developed.

Amongst many nanomaterials, graphene, i.e., a one-atom-thick
layer of carbon atoms in a honeycomb crystal lattice [88, 30], has re-
cently attracted the attention of the scientific community due to its
unique physical, electrical and optical properties. Indeed, despite the-
oretical research on graphene started back in the 19th century, the
experimental discovery of graphene in 2004 by Andre Geim and Kon-
stantin Novoselov, which earned them the Nobel Prize in Physics in

2
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1.1. Applications of Nanonetworks 3

2010, drastically boosted the interest in this unique nanomaterial as
well as on its derivatives, e.g., graphene nanoribbons (GNRs), which
are thin strips of graphene, and carbon nanotubes (CNTs), which can
be analyzed as rolled graphene. Their unique properties enable the
development of new types of nano-processors, nano-memories, nano-
batteries, and nanosensors, amongst others.

The integration of several of these nano-components in a single en-
tity will enable the development of novel nanomachines. More impor-
tantly, similarly to the way in which communication among computers
enabled revolutionary applications such as the Internet, by means of
communication, nanomachines will be able to overcome their limita-
tions and expand their potential applications [1, 2, 3, 4, 56]. The re-
sulting nanonetworks, i.e., networks of nanomachines, will be able to
cover larger areas, to reach unprecedented locations in a non-invasive
way, and to perform additional in-network processing.

1.1 Applications of Nanonetworks

Nanonetworks are the enabling technology of many long-awaited appli-
cations:

• Biomedical applications: The nanoscale is the natural do-
main of molecules, proteins, DNA, organelles and the major
components of living cells [85]. As a result, a very large num-
ber of applications of nanonetworks is in the biomedical field.
For example, nanomaterial-based biological nanosensors [148] can
be deployed over (e.g., tattoo-like) or even inside the human
body (e.g., a pill or intramuscular injection) to monitor glucose,
sodium, and cholesterol [21, 71], to detect the presence of infec-
tious agents [126], or to identify specific types of cancer [129].
A wireless interface between these nanomachines and a micro-
device, such as a cellphone or medical equipment, could be used
to collect data and to forward it to a healthcare provider.

• Environmental applications: Trees, herbs, or bushes, release
several chemical composites to the air in order to attract the
natural predators of the insects that are attacking them, or to

Full text available at: http://dx.doi.org/10.1561/1300000045



4 Introduction

Personal Electronic 
Devices 

To the Internet 

Other Things Intra- and Over- the 
Body Nano-Things 

Figure 1.1: The Internet of Nano-Things.

regulate their blooming among different plantations, amongst
others [41, 42, 104]. Chemical nanosensors [148] could be used
to detect the chemical compounds that are being released and
exchanged between plants. Nanonetworks can be build around
classical sensor devices which are already deployed in agriculture
fields [5]. Other environmental applications include biodiversity
control, biodegradation assistance, or air pollution control [109].

• Industrial and consumer goods applications: The appli-
cations of nanotechnology in the development of new industrial
and consumer goods range from flexible and stretchable elec-
tronic devices [110] to new functionalized nanomaterials for self-
cleaning anti-microbial textiles [128]. In addition, the integration
of nanomachines with communication capabilities in every single
object will allow the interconnection of almost everything in our
daily life, from cooking utensils to every element in our work-
ing place, or also the components of every device, enabling what

Full text available at: http://dx.doi.org/10.1561/1300000045



1.2. Nanomachine Hardware Architecture 5

we define as the Internet of Nano-Things (see Figure 1.1) [3].
Moreover, as nano-cameras and nano-phones are developed, in a
more futuristic approach, the the Internet of Multimedia Nano-
Things [56] will also become a reality.

• Military and defense applications: Advanced nuclear, bio-
logical and chemical (NBC) defenses, and sophisticated damage
detection systems for civil structures, soldiers’ armor and military
vehicles, are two examples of the military applications enabled by
nanonetworks. For example, a network of nanosensors can be used
to detect harmful chemicals and biological weapons with unprece-
dented accuracy and timeliness, in very different scenarios, from
the battle-field (e.g., deployed from an unmanned vehicle and im-
perceptible by the human eye) to airport lobbies or a conference
room (e.g., contained within the wall paint).

1.2 Nanomachine Hardware Architecture

There are many challenges in the development of autonomous nanoma-
chines. In Figure 1.2, a conceptual nanomachine architecture is shown.
To the best of our knowledge, fully functional nanomachines have not
been built to date. However, several solutions for each nano-component
have been prototyped and tested:

• Processing Unit: Nano-processors are being enabled by the de-
velopment of tinier FET transistors in different forms. The small-
est transistor that has been experimentally tested to date is based
on a thin graphene strip made of just 10 by 1 carbon atoms [105].
These transistors are not only smaller, but also able to operate at
higher frequencies. The complexity of the operations that a nano-
processor will be able to handle directly depend on the number
of integrated transistors in the chip, thus, on its total size.

• Data Storage Unit: Nanomaterials and new manufacturing
processes are enabling the development of single-atom nano-
memories, in which the storage of one bit of information re-
quires only one atom [10]. For example, in a magnetic mem-

Full text available at: http://dx.doi.org/10.1561/1300000045



6 Introduction

Nano-antenna Nano- 
transceiver

Nanosensors

Nano-memory

Nano-power
6 μm

2 μm

1 μm

Nano-processor

Figure 1.2: Nanomachine hardware architecture.

ory [98], atoms are placed over a surface by means of magnetic
forces. While these memories are not ready yet for nanomachines,
they serve as a starting point. The total amount of information
storable in a nano-memory will depend on its dimensions.

• Power Unit: Powering nanomachines requires new types of
nano-batteries [51, 123] as well as nanoscale energy harvesting
systems [138]. One of the most promising techniques relies on the
piezoelectric effect seen in zinc oxide nanowires, which are used to
convert vibrational energy into electricity. This energy can then
be stored in a nano-battery and consumed by the device. The
rate at which energy is harvested and the total energy that can
be stored in a nano-device depends ultimately on the device size.

• Sensing Unit: Physical, chemical and biological nanosensors
have been developed by using graphene and other nanomateri-
als [43, 148]. A nanosensor is not just a tiny sensor, but a device
that makes use of the novel properties of nanomaterials to iden-
tify and measure new types of events in the nanoscale, such as
the physical characteristics of structures just a few nanometers in
size, chemical compounds in concentrations as low as one part per
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1.3. Research Objectives and Outcomes 7

billion, or the presence of biological agents such as virus, bacteria
or cancerous cells. Their accuracy and timeliness is much higher
than those of existing sensors.

• Communication Unit: The miniaturization of an antenna to
meet the size constraints of nanomachines would impose the use
of very high frequencies. This would limit the feasibility of electro-
magnetic nanonetworks due to the energy limitations of nanoma-
chines. As we will discuss in Chapter 2, nanomaterials can be
used to develop new types of nano-antennas as well as nano-
transceivers, which can operate at much lower frequencies than
miniature metallic antennas. However, these introduce many chal-
lenges for the realization of communication in nanonetworks. This
sets the starting point of this work.

In addition, there are many crucial challenges in the integration of the
different components into a single device. New methods to position
and contact different nano-components are currently being developed.
Amongst others, DNA scaffolding [62] is one of the most promising
techniques. In [62], a procedure to arrange DNA synthesized strands
on surfaces made of materials compatible with semiconductor man-
ufacturing equipment has been demonstrated. The positioned DNA
nano-structures can serve as scaffolds, or miniature circuit boards, for
the precise assembly of the nano-components.

1.3 Research Objectives and Outcomes

Due to the hardware peculiarities of nanomachines and the specific
applications in which they will be used, nanonetworks are not just a
miniaturization of classical wireless networks. There are several chal-
lenges in the realization of this new networking paradigm that require
new solutions and even to rethink some well-established concepts in
communication and network theory. These challenges range from the
design of novel nano-antennas, to the characterization of the electro-
magnetic frequency band in which nano-antennas will radiate or the
development of tailored communication mechanisms for nanomachines.

Full text available at: http://dx.doi.org/10.1561/1300000045



8 Introduction

The objective of this work is to establish the foundations of
graphene-enabled electromagnetic nanonetworks in the Terahertz Band
(0.1-10 THz). The starting point is the development of pioneering
graphene-based nano-antennas for communication among nanoma-
chines. The developed analytical models and the related work in
graphene-based nano-electronic for RF applications point to the Tera-
hertz Band as the communication band for nanomachines. Motivated
by this result, a novel Terahertz Band channel model is developed and
the channel capacity of the Terahertz Band is investigated. For very
short distances, i.e., much below one meter, the Terahertz Band be-
haves as a single transmission window which is almost 10 THz wide.
Starting from this result, a new set of communication mechanisms for
nanonetworks is developed. These include a novel modulation, new
channel coding techniques, a novel receiver symbol detection scheme
and a medium access control protocol for nanonetworks. In addition,
a complete energy model for energy-harvesting self-powered nanoma-
chines is developed to investigate the energy limitations of perpetual
nanonetworks. Moreover, an emulation platform is defined and used to
validate a one-to-one nano-link between two active nanomachines.

1.4 Outline of this Work

The remaining of this work is organized as follows. In Chapter 2, a
novel graphene-based plasmonic nano-antenna is proposed, modeled
and analyzed. First, the working principle of the antenna is presented.
Then, the antenna frequency response is obtained by starting from a
novel dynamic complex conductivity model of graphene nanoribbons.

In Chapter 3, a new Terahertz Band channel model is developed, by
using radiative transfer theory to obtain formulations for the total path
loss and molecular absorption in the Terahertz Band. In addition, the
channel capacity is investigated for different power allocation schemes.

In Chapter 4, a femtosecond-long pulse-based modulation and chan-
nel access scheme for nanonetworks is proposed. Its performance its
analyzed in terms of achievable information rate both for the single-
user case and the multi-user case. Novel stochastic models of molecular

Full text available at: http://dx.doi.org/10.1561/1300000045



1.4. Outline of this Work 9

absorption noise and interference are also developed.
In Chapter 5, a low-weight channel coding technique for error pre-

vention in nanonetworks is developed. First, the impact of the coding
weight on the noise and the multi-user interference power is analyzed.
Then, the performance of low-weight codes is analytically and numer-
ically investigated.

In Chapter 6, a receiver symbol detection scheme to support the
proposed pulse-based modulation and coding techniques is developed.
First, the functioning and potential implementation of the CTMA-
based detection mechanism is presented. Afterwards, the performance
of the proposed scheme is analyzed.

In Chapter 7, a joint energy harvesting and energy consumption
model for perpetual nanonetworks in the Terahertz Band is developed.
First, an analytical model of novel piezoelectric nano-generators devel-
oped and the energy consumption due to communication is quantized.
Afterwards, the two processes are jointly analyzed.

In Chapter 8, a physical layer aware MAC protocol for nanonet-
works is presented. Its performance is numerically analyzed in terms
of energy consumption, end-to-end delay and throughput, by making
active use of the developed channel, noise and interference models for
nanonetworks in the Terahertz Band.

In Chapter 9, a multi-physics emulation framework is presented. Its
implementation is explained in detail. First, the validation of the nano-
antenna and the Terahertz Band channel model is performed separately
in COMSOL. Afterwards, the integration of COMSOL and Matlab is
explained and the complete nano-link is emulated.

Finally, in Chapter 10, the research contributions are summarized
and future research directions are identified.

Full text available at: http://dx.doi.org/10.1561/1300000045
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